

dhc Ángel A. Carbonell Barrachina Director group Food Quality and Safety

Full Professor

Centro de Investigación e innovación Agroalimentaria y Agroambiental

Universidad Miguel Hernández de Elche Ctra. de Beniel, km 3,2 03312 Orihuela, Alicante

In my modest opinion, ...

This concept is reflected in my CV and history. As you can see in this slide, I have written and published international manuscripts with more than 500 researchers, ...

... from 42 centers

and 32 countries,

Let's start with the introduction

Before I start even with the Introduction section, I would like you to share with you an idea. Imagine you go to the supermarket and you have these two options for table olive:

- 1. You have this jar of 200 g of olives cultivated under "conventional" conditions and it cost you 1,35 euros.
- 2. Besides, you have a second option. This jar of 200 g of olives cultivated with a "lower amount of irrigation water", the quality is similar but it cost you 1,75 euros.

Which jar would you take home? ... Why? Please, just think about it and we will answer these two questions at the end of the presentation.

Let's start with the introduction

Do we need to make an efficient use of irrigation water?

Is it compulsory??

Then, the United Nations launches us in 2015 The 2030 Agenda for Sustainable Development that establishes a transformative vision towards economic, social and environmental sustainability until the year 2030.

By 2030, significantly increase the efficient use of water resources in all sectors and ensure the sustainability of freshwater extraction and supply to address water scarcity and significantly reduce the number of people suffering from lack of access water. https://www.fao.org/sustainable-development-goals/indicators/641/es/

Luego, las Naciones Unidas nos lanza en 2015 La Agenda 2030 para el Desarrollo Sostenible que establece una visión transformadora hacia la sostenibilidad económica, social y ambiental hasta el año 2030.

De aquí a 2030, aumentar considerablemente el uso eficiente de los recursos hídricos en todos los sectores y asegurar la sostenibilidad de la extracción y el abastecimiento de agua dulce para hacer frente a la escasez de agua y reducir considerablemente el número de personas que sufren falta de agua. https://www.fao.org/sustainable-development-goals/indicators/641/es/

According to World Resource Institute water scarcity affects every continent and this graphic represents the most affected countries. As we can observe, Spain is one of these affected countries. France fortunately is not included here, but ... desertification is going north and all countries must be aware of this enormous problem.

And the situation is not getting better, but worst,

-due to the global population growth and

-the **climate change** which involves an **increase in average air temperature** -and a **decrease of precipita**tions.

As a result,

-world food demand will rise

-and unfortunately, water, which is the basis for our food production, it is currently under heavy restrictions.

All these aspects guided us to the other reason to develop this research which is the **Agriculture**.

-This sector is the largest consumer of fresh water by far (70-95 %)

-because more than 40 % of world food is produced under irrigated areas.

Did you know that, depending on the diet, we need from 2,000 to 5,000 liters of water to produce the food a person consumes daily?

Evidence suggests that two-thirds of the world's population could be living in water-scarce countries by 2025 if current consumption patterns continue.

To achieve a #ZeroHunger world by 2030, we must act now.

https://www.fao.org/fao-stories/article/en/c/1185405/

- So, what agriculture can do to save water? We propose two alternatives,
- -first of them is the **plant material** which should be
- -less water demanding,
- -more resistant to water stress and
- -susceptible to improve the water productivity.

And the second alternative is **the use of deficit irrigation strategies** which can save water, with minimum impact on yield.

Due to this increase in population and demand, the olive tree has experienced an exponential increase in recent decades to supply market consumption, with Spain being the main producer in the world with a production of 9.8 million tons, followed by Italy, Morocco and Turkey.

2nd largest irrigated crop in Spain

For all these reasons, we think that the use of deficit irrigation strategies is a good option to save water with minimal losses in production. For example, Controlled Deficit Irrigation is a strategy that is based on the reduction of irrigation water in those phenological periods in which it is known that trees are more resistant to stress. While Sustained Deficit Irrigation consists of irrigating the entire cycle below the demand of the crop but using a frequency of contributions high enough to achieve uniform stress.

But, ... let's be carefully because ...

The hypothesis of all these studies is that the increase in the quality of table olives from olive trees that have been subjected to moderate deficit irrigation can be dangerous if the conditions are taken to the limit...

The University of Seville has carried out deficit irrigation strategies in various crops, which are almond, pistachio and pomegranate.

The quality of the fruits of these crops have been evaluated by the Miguel Hernández University, finding that, in general terms, with a MODERATE DEFICIENCY IRRIGATION, the total PUFA content increases, the intensity of some sensory attributes increases, and the acceptance by of consumers. From the union of these two concepts, the HidroSOStenible brand was born

Now, I Will explain all these sections using the Results generated by one of the PhD dissertations conducted within our research team, Dr. Lucía Sánchez

The olive development consists of three periods:

(i) **stage I**: it starts at the beginning of the fruit growth ending at the beginning of massive pit hardening;

(ii) **stage II**: period in which pit hardens; and finally,

(iii) **stage III**: period of oil accumulation and maturation.

Irrigation Treatments • Control (T0): Irrigation was applied to supply the estimated crop evapo-transpiration (ETc); this means that a full replenishing of all the extracted soil water was conducted by addition of irrigation water. • RDI-1 (T1, soft stress): (1) Olive trees were under low water deficit conditions; in this way, trees were only irrigated when the TGR (trunk growth rate) was lower than $10 \,\mu m \, day^{-1}$ (this is half the value found in trees under fully irrigated conditions); (2) the same conditions as in stage I; and (3) finally at stage III, enough water was applied to reach a water status similar to that of TO trees. • RDI-2 (T2, moderate stress): (1) During stage I, olive trees were under low water deficit conditions; trees were only irrigated when the TGR was lower than $10 \,\mu m \,day^{-1}$; (2) trees were not irrigated during stage II; and (3) finally at stage III, enough water was applied to reach a water status similar to that of T0 trees.

Control (T0): Irrigation to supply the **estimated crop evapotranspiration (ETc)**, i.e., based on fully replenishing all the extracted soil water.

RDI-1 (T1): (i) stage I, trees irrigated under non-limited conditions; (ii) stage II, trees under moderate water deficit conditions, they were no irrigated during this period; and, (iii) stage III,

water applied in order to provide a water status similar to T0 treatment.

RDI-2 (T2): (i) stage I, trees under low water deficit conditions. Trees were

irrigated only when TGR was lower than 10 mm day1; this is half of the TGR in fully irrigated conditions (ii) stage II, trees under moderate water deficit conditions, they were no irrigated during this period; and, (iii) stage III, water applied in order to provide a water status similar to T0 treatment.

Parameter	ANOVAª	TO	T1	T2	Pooled sto deviation
Oil content (g kg ⁻¹ dw)	**	278 b ^c	341 a	273 b	51
C16:1		2.7 a	1.9 b	2.3 a	0.3
C16:0	NS	16.3	17.8	17.5	2.0
C18:2		4.9 b	7.4 a	5.4 b	1.6
C18:1		69.3 a	67.1 b	68.1 ab	1.4
C18:0	NS	5.2	4.9	5.2	0.5
C20:1	NS	0.6	0.3	0.5	0.4
C20:0	NS	1.0	0.6	1.0	0.4
SFA ^b	NS	22.6	23.3	23.6	1.1
MUFA ^b	•	72.6 a	69.3 b	70.9 ab	2.1
PUFA ^b	••	4.9 b	7.4 a	5.4 ab	1.6
(MUFA + PUFA)/SFA ^b		3.43 a	3.30 ab	3.23 b	0.13

	Compound	Control	T1 Area (%)	T2				C	1
1	Ethanol	4.04	3.70	7.14			-	1	
2	Dimethylsulfide	3.50	7.35	9.17	→				_
3	Acetic acid	9.59	11.70	15.90	->				
4	Heptane	4.30	7.63	5.06					
5	Propiopic acid	0.28	0.46	0.60	-				
6	Ethyl propanoate	0.11	0.19	0.17					
7	Propul acotato	0.00	0.24	0.14					
, 0	Octano	2.25	4.62	6 72					
0	2 Mathedu terrain anid	0.23	4.03	0.40	-				
9	2-Wethyloutanoic aciu	0.52	0.45	0.40					
10	rururai	0.65	0.70	0.15	-				
	US-3-Receipt	5.99	2.33	4.76					
	1-Hexanol	0.82	0.83	0.52					
12		0.24	0.13	0.25					
12 13	cis-2-Heptenal		0.68	0.91		Compound	Control	T1 Area (N)	n
12 13 14	cis - 2-Heptenal Hexanoic a cid	0.95	0.00					2.67	2.50
12 13 14 15	<i>cis</i> - 2- Heptenal Hexanoic acid Benzaldehyde	0.95	0.57	0.48	←	21 Linorece	294	0.05	0.09
12 13 14 15 16	cis-2-Heptenal Hexanoic acid Benzaldehyde 6-Methyl-5-hepten-2-one	0.95 7.71 0.18	0.57	0.48 0.41	← →	21 Linonene 22 toss-g-Ocimene 22 Phenylacataldehyde	0.30 0.30	0.05	0.09
12 13 14 15 16 17	cis-2-Heptenal Hexanoic acid Benzaldehyde 6-Methyl-5-hepten-2-one β-Pinene	0.95 7.71 0.18 0.10	0.57 0.29 0.13	0.48 0.41 0.25	← → →	21 Linonene 22 isons-g-Ocimene 23 Pierylaortaldehyde 24 i-Octanel 25 y-Terpinene	2.64 0.28 0.30 2.64 0.46	0.05 0.46 0.67 1.86	0.09 0.36 1.72 0.34
12 13 14 15 16 17 18	cis-2-Heptenal Hexanoic acid Benzaldehyde 6-Methyl-5-hepten-2-one β-Pinene Octanal	0.95 7.71 0.18 0.10 0.43	0.57 0.29 0.13 0.39	0.48 0.41 0.25 0.31	← → →	21 Lineven 22 Inne -g-Ocineee 23 Persplorataldingde 24 I-Octanal 25	194 028 030 264 046 253 062	0.05 0.46 0.67 1.86 1.71 1.05	0.09 0.36 1.72 0.24 0.47 0.06
12 13 14 15 16 17 18 19	cis-2-Heptenal Hexanoic acid Benzaldehyde 6-Methyl-5-hepten-2-one β-Pinene Octanal Hexvi acetate	0.95 7.71 0.18 0.10 0.43 0.27	0.57 0.29 0.13 0.39 0.23	0.48 0.41 0.25 0.31 0.33	← → →	21 Sinstein 22 Sons 4 Ociente 23 Sons 4 Ociente 29 Persploretaldehyte 24 L-Octanil 25	2.94 0.28 0.30 2.64 0.46 2.53 0.62 0.23 0.62	0.05 0.46 0.67 1.86 1.71 1.05 0.19	0.09 0.36 1.72 0.34 0.47 0.06 0.50 1.71
12 13 14 15 16 17 18 19 20	cis-2-Heptenal Hexanolic acid Benzaldehyde 6-Methyl-5-hepten-2-one β-Pinene Octanal Hexyl acetate α_Comene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23	0.48 0.41 0.25 0.31 0.33	← → →	21 Lineanee 22 State 4 Octome 29 Manglacetalahiyde 29 Manglacetalahiyde 21 Soctand 22 Syntaxiaalahiyde 22 Syntaxiaalahiyde 22 Syntaxiaalahiyde 22 Sindacata 20 Viodecate 20 Noranal 20 A Somethyl 1,1,2-Manatore	2.94 0.28 0.30 2.64 0.46 2.53 0.62 0.23 1.62 2.97	0.05 0.46 0.67 1.86 1.71 1.05 0.19 1.77 6.35	0.09 0.36 1.72 0.34 0.47 0.06 0.50 1.71 5.97
12 13 14 15 16 17 18 19 20	cis-2-Heptenal Hexanoic acid Benzaldehyde 6-Methyl-5-hepten-2-one β-Pinene Octanal Hexyl acetate p-Cymene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23 0.19	0.48 0.41 0.25 0.31 0.33 0.10	← → →	P1 Linacenes D2 torus - 4-Crimen D2 Therefunctabilityde D4 10-Crandi D5 - 1-Crandi D5 - 1-Crand	2.84 0.28 0.30 2.64 0.65 2.53 0.62 1.63 2.87 1.63 2.87 1.09	0.05 0.46 0.67 1.86 1.71 1.05 0.19 1.77 6.25 0.62	0.09 0.36 1.72 0.34 0.47 0.06 0.50 1.71 5.97 2.33 0.28
12 13 14 15 16 17 18 19 20	ds - 2 Heptenal Hexanoic add Benzaldehyde 6-Methyf-5-hepten-2-one B-Pinene Octanal Hexyl acetate p-Cymene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23 0.19	0.48 0.41 0.25 0.31 0.33 0.10	← → →	21 Unionnee 21 Unionnee 22 Totos - g-Colome 22 Promplaceal/don/ee 22 Totos 22 Totosone 23 - y-Totosone 24 - Located 25 - y-Totosone 26 Union 20 - Unionne 20 - Unione 20 - Unione 20 - Unione 20 - Unionne 20 - Union	234 028 030 264 046 253 042 162 287 162 287 155 109 046 232	0.05 0.46 0.67 1.86 1.71 1.05 0.19 1.77 6.25 0.82 0.82 0.62 1.17	0.09 0.36 1.72 0.34 0.47 0.06 0.50 1.71 5.97 2.33 0.38 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
12 13 14 15 16 17 18 19 20	cis - 2- Heptenal Hexanolic acid Benzaldehyde 6-Methyl-5-hepten-2-one β-Pinene Octanal Hexyl acetate ρ-Cymene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23 0.19	0.48 0.41 0.25 0.31 0.33 0.10	← → →	2/ University 2/ University 2/ University 2/ Inter- 2/ 2/ 3/ 3/ 3/ 4/ 4/ 4/ 4/ 5/ 2/ 3/ 3/ 3/ 4/	2344 0.28 0.20 0.46 253 0.62 0.23 1.62 2.97 1.25 1.97 1.25 1.99 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0	0.05 0.46 0.67 1.86 1.71 1.05 0.19 1.77 6.25 0.82 0.62 1.17 6.25 13.72	0.09 0.36 1.73 0.34 0.47 0.06 0.50 1.71 5.97 2.33 0.28 0.72 8.07 6.61
12 13 14 15 16 17 18 19 20	ds -2-Heptenal Hexanoic aid Benzaldehyde 6-Methyl-S-hepten-2-one β-Pinene Octanal Hexyl acetate <i>p</i> -Cymene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23 0.19	0.48 0.41 0.25 0.31 0.33 0.10	← → →	21 Sensore 22 Term Cohene 22 Periodic Scheme 23 Periodic Scheme 23 Periodic Scheme 23 Periodic Scheme 24 Periodic Scheme 25 Per	144 028 020 264 046 253 162 162 162 162 162 162 162 162 162 162	2.43 0.05 0.46 0.67 1.86 1.71 1.05 0.19 1.77 6.25 0.82 0.82 0.82 0.62 1.17 6.25 13.72 0.51 0.20	0.09 0.26 1.72 0.36 0.67 0.06 0.50 1.71 2.32 0.28 0.72 8.07 6.61 0.57 0.55
12 13 14 15 16 17 18 19 20	ds -2-Heptmal Hexanolt acid Benzaldkhyde 6-Methyl-5-hepten-2-one β-Pinene 0-Cotanal Hexyl acetate <i>p</i> -Cymene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23 0.19	0.48 0.41 0.25 0.31 0.33 0.10	← →	21 Lansere 22 Inter-Section 2 doctman 22 Inter-Section 2 doctman 22 Inter-Section 2 doctman 22 Inter-Section 2 doctman 24 Inter-Section 2 doctman 25 Inter-Section 2 doctman 26 Inter-Section 2 doctman 27 Inter-Section 2 doctman 28 Inter-Section 2 doctman 29 Inter-Section 2 doctman 29 Inter-Section 2 doctman 20 Inter-Section 2 doctman 20 Inter-Section 2 doctman 20 Inter-Section 2 doctman 21 Inter-Section 2 doctman 22 Inter-Section 2 doctman 22 Inter-Section 2 doctman 23 Inter-Section 2 doctman 24 Inter-Section 2 doctman 25 Inter-Section 2 doctman 26 Inter-Section 2 doctman 27 Inter-Section 2 doctman 27 Inter-Section 2 doctman 28 Inter-Section 2 doctman 29 Inter-Section 2 doctman 29 Inter-Section 2 doctman 20 Inter-Se	104 028 030 264 046 053 053 155 109 0666 297 856 0666 0666 0666 0666 0666 0666 0666	2.45 0.05 0.46 0.47 1.96 1.71 1.05 0.19 0.19 0.19 0.19 0.42 0.42 0.42 0.42 0.42 1.17 4.25 1.17 4.25 1.172 0.51 1.176	0.09 0.16 1.72 0.24 0.47 0.06 0.50 1.71 5.97 2.23 0.32 0.32 8.07 6.61 0.57 0.55 6.20
12 13 14 15 16 17 18 19 20	dis 2-Heptenal Hexanolic acid Benzaldehyde 6-Methyd 5-hepten-2-one 8-Pienee Octanal Hexyl acetate <i>p</i> -Cymene	0.95 7.71 0.18 0.10 0.43 0.27 0.14	0.57 0.29 0.13 0.39 0.23 0.19	0.48 0.41 0.25 0.31 0.33 0.10	← → →	J Linearce 22 Intel of Control 23 Intel of Control 24 Intel of Control 25 Intel of Control 26 Intel of Control 27 Intel of Control 28 Intel of Control 29 Intel of Control 20 Intel of Control of Control 28 Intel of Control of Control 29 Intel of Control of Control 20 Intel of Control of Control 21 Intel of Control of Control 22 Intel of Control of Control 23 Intel of Control of Control 24 Intel of Control of Control 25 Intel of Control of Control 26 Intel of Control of Control 27 Intel of Control of Control 28 Intel of Control of Control 29 Intel of Control of Control 20 Intel of Control of Control 21 Intel of Control of Control 22 Intel of Control of Control 23 Intel of Co	164 038 030 264 046 251 023 162 162 162 162 165 165 066 257 858 062 064 064 064 064 064 064 065 065	2.46 0.05 0.46 1.71 1.05 1.72 1.05 1.72 1.05 0.19 1.77 6.25 1.27 6.25 1.272 0.63 1.27 6.25 1.272 0.53 1.276 0.20 1.176	0.09 0.34 1.72 0.34 0.47 0.06 0.50 1.71 2.23 0.28 0.72 8.07 6.61 0.55 6.20 1.13 0.48 0.55 6.20

	2	۶		1				L.	/olatile C	Compo	u
	Compound	Contral	Area (%)	"							
1	Ethanol	4.06	2.70	7.14							
2	Dimethylsulfide Acatic scid	2.50	7.25	9.17	-				A		
÷	Hegtane	4.30	7.63	5.06	-				1		
5	Propionic acid	0.28	0.46	0.60	-				a second	-	
-	Ethyl propancate Proted acetate	0.11	0.19	0.17							1
2	Octane	2.25	4.63	\$.72	-						
9	2-Methylbutanoic acid	0.32	0.43	0.40						_	-
7	ramara dir Juliananni	0.85	2.22	0.15	•		Commonweak	Control	T1	T2	
2	1-Hexanol	0.82	0.83	0.52			Compound		Area (%)		
2	dis -2-Heptenal	0.26	0.13	0.25		21	Limonopo	2.04	2.45	2.50	-
	Reczaldehyde	7.71	0.57	0.48	F	21	Linoieie	3.94	2.45	3.50	
	6-Methyl-5-hepten-2-one	0.18	0.29	0.41	-	22	trans-p-ucimene	0.28	0.05	U.09	
	g-Roese Octobal	0.30	0.12	0.25	-	23	Phenylacetaldehyde	0.30	0.46	0.36	
5	Hexyl acetate	0.27	0.23	0.33		24	1-Octanol	2.64	0.67	1.73	
2	p-Cymene	0.56	0.19	0.10		25	- Torningno	0.46	1.96	0.24	
						25	Contract 2 Mathematica	2.52	1.00	0.47	
						20	Gualacoi-2-metrioxy-prenoi	2.53	1./1	0.47	
						27	Undecane	0.62	1.05	0.06	
						28	Linalool	0.23	0.19	0.50	
						29	Nonanal	1.62	1.77	1.71	
						30	4.8-Dimethyl-1.3.7-Nonatriene	3.97	6.35	5.97	
						31	Phenethyl alcohol	1.75	0.82	2 33	
						22	4 Ethylohonol	1.00	0.62	0.29	
						32	4-conjunction	1.09	0.03	0.28	
						33	Ethyl octanoate	0.66	1.1/	U.72	
						34	1,4-Dimethoxy-benzene	7.97	6.25	8.07	
						35	Tetrahydrogeraniol	8.58	13.72	6.61	
						36	α-Citronellol	0.82	0.51	0.57	
						37	Bornvlene	0.41	0.20	0.55	
						20	2 Decemal	0.07	11.76	6 20	
						30	2-Decenar	9.97	11.70	0.20	
						39	5-mydroxymetnynuffufal	0.72	0.99	1.15	
						40	2-Decenal	0.54	1.58	0.48	
						41	Tridecane	1.49	0.12	4.91	

In general, **alcohols** (high in T0 and T2) are associated with **fruity** and candy flavor notes, **aldehydes** (highest in T0) with **green**, **vegetable** and **herbaceous notes**,

terpenes (highest in T1) with citrus and pine notes,

organic acids (highest in T2) with herbaceous and vinegar notes, and **phenolic compounds** with green, woody, and cheesy notes

In general, alcohols (high in TO and T2) are associated with fruity and candy flavor notes, aldehydes (highest in TO) with green, vegetable and herbaceous notes,

terpenes (highest in T1) with citrus and pine notes,

organic acids (highest in T2) with herbaceous and vinegar notes, and phenolic compounds with green, woody, and cheesy notes

In general, **alcohols** (high in T0 and T2) are associated with fruity and candy flavor notes, **aldehydes** (highest in T0) with green, vegetable and herbaceous notes.

terpenes (highest in T1) with citrus and pine notes.

organic acids (highest in T2) with herbaceous and vinegar notes, and phenolic compounds with green, woody, and cheesy notes.

Treatment	Eorce (N)	Statistics		5	6	
Control	0.506 0.024	b				
T2	0.034 0.473 0.021	a b				
		*** (Tulenu)		-		
		(Tukey)				
This test is rela A slight reducti	ted to the hardness o on in the irrigation wa	of the olive <u>skin/peel</u> . ater results in a signif AGNESS-TAYLOR	cant increase of the skir <u>est</u>	n hardness.		
This test is rela A slight reducti	ted to the hardness o on in the irrigation wa	of the olive <u>skin/peel</u> . ater results in a signif AGNESS-TAYLOR :	cant increase of the skir <u>est</u>	hardness.		
This test is rela [.] A slight reducti	ted to the hardness o on in the irrigation wa MA Treatment	of the olive <u>skin/peel</u> , ater results in a signif AGNESS-TAYLOR : Force (N)	cant increase of the skir est	n hardness.		
This test is rela [.] A slight reducti	ted to the hardness o on in the irrigation was MA Treatment Control	of the olive <u>skin/peel</u> . ater results in a signif AGNESS-TAYLOR Force (N) 6.533 0.348 5.401 0.253	cant increase of the skir est Statistics b	n hardness.		
This test is rela [.] A slight reducti	ted to the hardness o on in the irrigation with MA Treatment Control T1 T2	of the olive <u>skin/peel</u> . ater results in a signif AGNESS-TAYLOR 6.533 0.348 5.401 0.253 5.135 0.314	Cant increase of the skir est Statistics a b b	ı hardness.		
This test is rela A slight reducti	ted to the hardness o on in the irrigation with MA Treatment Control T1 T2	of the olive skin/peel. ater results in a signif AGNESS-TAYLOR Force (N) 6.533 0.348 5.401 0.253 5.135 0.314	cant increase of the skin est Statistics a b b b	a hardness.		
This test is rela [,] A slight reducti	ted to the hardness o on in the irrigation was MA	of the olive skin/peel. ater results in a signif AGNESS-TAYLOR Force (N) 6.533 0.348 5.401 0.253 5.135 0.314	cant increase of the skir est Statistics a b b b c (Tukey)	1 hardness.		
'his test is rela'	ted to the hardness o on in the irrigation w: <u>MA</u> <u>Treatment</u> <u>Control</u> <u>T2</u>	of the olive skin/peel. ater results in a signif AGNESS-TAYLOR 6.533 0.348 5.401 0.253 5.135 0.314	Statistics a b b (Tukey)	ı hardness.		

-							T1 sof
Sample	Salty	Bitter	Sour	Sweet	Green-Olive	Aftertaste	
ANOVA	*	**	NS	**	**	***	
TO	5.8 ab	4.8 b	1.6	1.9 b	6.8 a	6.5 b	
T1	6.9 a	6.8 a	2.3	1.9 b	7.1 a	7.9 a	
T2	5.5 b	4.4 b intense sa	2.7 Ity, bitter,	2.9 a green olive	5.7 b notes and afte	6.1 b	
T2 1 samples hav	5.5 b	4.4 b intense sa	2.7	2.9 a green olive	5.7 b notes and afte TEXTURE	6.1 b	
T2	5.5 b e the most	4.4 b intense sa mple	2.7 Ity, bitter, Hardness	2.9 a green olive Crunchine	5.7 b notes and afte TEXTURE rss Fibrousne	6.1 b ertaste. ss Separatio	n pulp-stone
T2 I1 samples hav	5.5 b e the most	4.4 b intense sa mple IOVA	2.7 Ity, bitter, Hardness	2.9 a green olive Crunchine NS	5.7 b notes and afte TEXTURE rss Fibrousne NS	6.1 b ertaste. ss Separatio	n pulp-stone
T2	5.5 b e the most	4.4 b intense sa mple IOVA TO	2.7 Ity, bitter, Hardness ** 6.3 b	2.9 a green olive Crunchine NS 6.5	5.7 b notes and afte TEXTURE SSS Fibrousne NS 0	6.1 b ertaste.	m pulp-stone * 7.9 a
T2	5.5 b e the most	4.4 b intense sa mple IOVA T0 T1	2.7 Ity, bitter, Hardness ** 6.3 b 7.8 a	2.9 a green olive Crunchine NS 6.5 6.0	5.7 b notes and after Fibrousne NS 0 0.1	6.1 b ertaste.	n pulp-stone * 7.9 a 5.9 b

							Affective T
oction d	s egree					T1 so	ft-RDI treatme
ample	Color	Flavor	Bitter	Salty	Hardness	Crunchiness	Aftertaste
NOVA	NS	*	NS	NS	NS	*	NS
T0	6.1	6.3 ab	6.1	6.0	6.5	6.2 ab	6.5
T1	6.7	6.9 a	6.7	6.7	6.8	6.9 a	6.3
T2	6.2	5.8 b	5.9	6.1	6.3	6.0 b	5.8
sumers w ibutes wa	rere, in genera is reflected in t	, very satisfied he highest GLC	by the attribu DBAL satisfacti	tes of the T1 : on degree: T0 = T1 = T1 =	6.5 ab 6.9 a 6.0 b	Like it extrem Like it extrem Like it very r Like it slight! Neither like	nely nuch rately
							y it nor dislike it
						—	Like it mode

Irrigation Treatments • Control (T0): Irrigation was applied to supply the estimated crop evapo-transpiration (ETc); this means that a full replenishing of all the extracted soil water was conducted by addition of irrigation water. • RDI-1 (T1, soft stress): (1) Olive trees were under low water deficit conditions; in this way, trees were only irrigated when the TGR (trunk growth rate) was lower than $10 \,\mu m \, day^{-1}$ (this is half the value found in trees under fully irrigated conditions); (2) the same conditions as in stage I; and (3) finally at stage III, enough water was applied to reach a water status similar to that of TO trees. • RDI-2 (T2, moderate stress): (1) During stage I, olive trees were under low water deficit conditions; trees were only irrigated when the TGR was lower than $10 \,\mu m \,day^{-1}$; (2) trees were not irrigated during stage II; and (3) finally at stage III, enough water was applied to reach a water status similar to that of T0 trees.

Control (T0): No stress.

RDI-1 (T1): SOFT stress.

RDI-2 (T2): MODERATE stress.

					Antioxidant Activi	ty and co	onsume	er acce	ptan
Table 6. Antioxidant activity polyphenols content (mg GAE k as affected by deficit irrigation tr	(mmol Tro g ⁻¹ DW) c eatment	olox kg ⁻¹ of 'Manzar	FW) an iilla' table	d total e olives				A	K.
Parameter	ANOVA	то	T1	T2					_
ABTS ⁺ (mmol Trolox kg ⁻¹ FW) DPPH [•] (mmol Trolox kg ⁻¹ FW) FRAP (mmol Trolox kg ⁻¹ FW) H-AA (mmol Trolox kg ⁻¹ FW) L-AA (mmol Trolox kg ⁻¹ FW) TPC (g GAE kg ⁻¹ FW)	NS NS NS NS NS	13.4 13.6 29.1 10.2 2.61 5.29	13.2 13.1 22.1 8.61 2.57 5.28	13.4 13.2 28.6 9.14 2.56 5.27					
NS, not significant at $P < 0.05$. Values are the mean of three rep	lications.				Table 7. Affective senso affected by deficit irrigatio	ry analysis of n treatment	'Manzanilla	a' table oli	ives as
					Parameter	ANOVA	то	T1	T2
Is this go	od or I	bad?			Fresh table olive flavour Bitterness Saltiness Hardness Crunchiness After-taste GLOBAL Consumers used a 9-point S = neither like nor disilike, N For sionificant at P. of	NS NS NS NS NS NS NS hedonic scale, 9 = like extrem	6.5 6.3 6.0 7.4 7.5 6.4 6.5 where 1 = 0	6.8 6.4 6.4 7.3 7.3 6.4 6.8 dislike extr	6.4 6.1 6.2 6.9 6.9 6.2 6.3 remely,

El desarrollo de este índice ha sido posibles gracias a la investigación llevada a cabo por el grupo de investigación de Calidad y Seguridad Alimentaria de la UMH, y sus colaboradores (Universidad de Sevilla, Centro de Edafología y Biología aplicada del Segura (CEBAS-CSIC), Universidad Politécnica de Madrid e Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)), a través de los proyectos **AGL2013-45922-C2-1-R (e-SOS-agua**

DICATORS	which evaluate when (grey,) and how (wi	MADE MAL
Annuaches to determine nit	LEVEL Vac	S S
hardening	10	- -
Duration of irrigation restriction	Until last week Aug/Feb	5
	Until second week Aug/Feb	2
	Until last week July/Jan	1
Water saving in pit hardening	>50%	10
	30-50%	7
	30-40%	5
	10-20%	2
Approaches for irrigation	Plant and soil measurements	5
scheduling		
	Crop models	2
Measurements frequency	Continuous	10
	Discrete	8
Sampling	100% surface	10
	75-100% surface	8
	50-75% surface	4
	25-50% surface	2
Number of data	All surface	10
	10 data for each zone or at	8
	least 80% surface	
Water stress level	Midday stem water potential	5
	between -2 to -3.9MPa	

Los diferentes indicadores se traducen en una puntuación cuya suma genera un sistema de 4 etiquetas.

Los métodos señalados como idóneos para el análisis de los indicadores fueron aquellos ampliamente utilizados por los miembros expertos de los grupos de investigación participantes en los proyectos anteriormente mencionados y los comúnmente utilizados en la bibliografía (Cano-Lamadrid *et al.*, 2015; Fernandes-Silva *et al.*, 2013; ISO-12966-2, 2017; ISO-12966-4, 2015).

Sin embargo, se pueden utilizar otros métodos estandarizados, proporcionando resultados similares y válidos. La calidad y propiedades organolépticas de las aceitunas y su contenido en aceite están influenciadas por la implementación de buenas prácticas agronómicas

Al igual que en el índice hidroSOS de Riego, los indicadores se traducen en una puntuación que genera 4 etiquetas. La suma TOTAL es de 20 puntos para el Aceite de oliva virgen extra.

Etiqueta A (> 17 puntos). HidroSOStenible.

Etiqueta B (entre 13-16,9 puntos). Resultados interesantes, pero no HidroSOS.

Etiqueta C (entre 10-12.9 puntos). Importantes deficiencias en las características del aceite de oliva por una incorrecta gestión del riego.

Etiqueta D (< 10 puntos). Muy baja calidad. EL RDC no ha sido aplicado correctamente.

Las etiquetas para el caso de las aceitunas son exactamente iguales a las del aceite y lo único que varía es la puntuación para obtener cada una de ellas, ya que el total en este caso es de 25 puntos.

Puntuación TOTAL de 25 puntos

Aceitunas de mesa:

Etiqueta A (> 21 puntos). HidroSOStenible.

Etiqueta B (entre 16-20,9 puntos). Resultados interesantes, pero no HidroSOS.

Etiqueta C (entre 12,5-15.9 puntos). Importantes deficiencias en las características de las aceitunas de mesa por una incorrecta gestión del riego.

Etiqueta D (< 12,5 puntos). Muy baja calidad. EL RDC no ha sido aplicado correctamente.

Agradecer a los miembros del tribunal por haber aceptado formar parte del mismo y por su DEDICACIÓN PARA EVALUAR MI TESIS DOCTORAL, LA CUAL VOY A PASAR A EXPONER

For which, the specific objectives are:

- To determine the morphological, nutritional, functional and sensory quality of raw and seasoned hydro-sustainable olives and olive oil.
- To study the polyphenolic profile of raw and seasoned hydro-sustainable olives.
- To analyze consumer acceptance of hydroSUSTAINABLE olives in different locations.
- To study the bioaccessibility of phenols and antioxidant activity after simulating an in vitro digestion of hydro-sustainable olives

7 publicaciones científicas publicadas en JCR que dan respuesta a los objetivos planteados en esta tesis

4 Q1 1 Q2 2 Q3

PUBLICATIONS				
	PI	UBLICATION	12	
Sánchez-Rodríguez,	L., Lipan, L., Andre	u, L., Martín-	Palomo, M.J., Carbo	onell-Barrachina, Á.A.
Hernández, F., Sendr	a, E. 2019. Effect of	of regulated de	eficit irrigation on t	the quality of raw and
TABLE OLIVE	S. Agricultural	Water	Management. 2	221:415-421. DOI
10.1016/j.agwat.2019	.05.014			
	Р	ublished: 20 Ju	uly 2019	
Publish	er: Elsevier Science I	BV, PO Box 21	1, 1000 AE Amsterd	am, Netherlands
		ISSN: 0378-	3774	
	Research Dor	main: Agricult	ure; Water Resources	8
JCR [®] category	Quartile in Category	Rank	Impact Facto	5-year impact or factor
Water Resources	01	10/94	4.021	4.469

Publica	IJONS		B	
]	PUBLICATION 3	i	
Sánchez-Rodríguez,	L., Cano-Lamadrid	, M., Carbonell-Ba	arrachina, Á.A., Wojd	yło, A., Sendra, E.
Hernández, F. 2010	. Polyphenol Profile	e in "Manzanilla"	TABLE OLIVES as	affected by water
deficit during specifi	c phenological stage	s and Spanish-style	e processing. Journal	of Agricultural and
Food Chemistry. 67:	661-670. DOI: 10.10	021/acs.jafc.8b0639	92.	
Publ	Pu lisher: ACS Publicati	blished: 20 Decem	ber 2018 1 St NW Washington I	DC 20036
		ISSN: 0021-85	61	
Researc	h Domain : Chemistr	ry, applied; Foods s Multidisciplina	Science & Technology; ry.	; Agriculture,
JCR [®] category	Quartile in Category	Rank	Impact Factor	5-year impact factor
Food Science &	01	28/135	3.571	3 991

PUBLJCAI	JONS		-00	
	Р	UBLICATION 4	l	
Sánchez-Rodríguez,	L., Cano-Lamadrid,	M., Carbonell-Ba	urrachina, Á.A., Sendra	a, E., Hernández, I
2019 Volatile compo	sition, sensory profile	e and consumer ad	cceptability of hydroS	OStainable TABL
OLIVES. Foods. 8: /	70. DOI: 10.3390/fo	ods8100470		
	Du	blickede 10 Octob	2010	
	Pu	blished: 10 Octor	ber 2019	
	Publisher: MDPI St	Alban-Angale, 6	6 Basel, Switzerland 4	052
		ISSN: 2304-81	58	
			nce & Technology	
	Research Do	main: Food Scie	nee ee reennonogy.	
	Research Do	omain: Food Scie	iee ee reennology.	5-year impact
JCR [®] category	Research Do Quartile in Category	main: Food Scie Rank	Impact Factor	5-year impact factor
JCR [®] category	Research Do Quartile in Category	main: Food Scier	Impact Factor	5-year impact factor

Publjcat	JONS			
	Р	UBLICATION	5	
Sánchez-Rodríguez,	L., Cano-Lamadrid,	M., Carbonell-Ba	arrachina, Á.A., Sendra	a, E., Hernández, F
2020. Impact of gastr	ointestinul in vitro o	digestion and def	icit irrigation on antic	xidant activity and
phenolic content bio	accessibility of "Ma	anzanilla" TABI	E OLIVES. Journal	of Food Quality
Volume 2020, Article	ID 6348194, 6 pages	DOI: 10.1155/20	020/6348194	,
	Pu	blished: 10 Octo	ber 2019	
	Publishor: Wilow 1	11 Diver St. Lloho	ken 07030 5774 NLL	IS A
	i uonsiici . wiicy, i	11 1000	acii 07050*5774, NJ C	0.1
		ISSN: 2304-81	158	
	Research Do	main: Food Scie	nce & Technology.	
	Research Do	omain: Food Scie	nce & Technology.	5-year impact
JCR [®] category	Research Do Quartile in Category	omain: Food Scie Rank	nce & Technology. Impact Factor	5-year impact factor
JCR [®] category Food Science and	Research Do Quartile in Category	main: Food Scie Rank	Impact Factor	5-year impact factor

During the growth of the fruit, 3 phenological states can be distinguished:

- 1. which lasts approximately 10 weeks and goes from the setting of the fruit until the hardening of the bone begins
- 2. with a duration of 7 weeks, which includes the hardening of the bone and the growth of the size of the fruit stops
- 3. it can last between 9 and 17 weeks since it is the phase of maturation and accumulation of oil, so depending on the final use of the olive, it will be harvested before or after.

I will begin by explaining the materials and methods used in the case of olives of the "Manzanilla" variety.

A \rightarrow stage 2 because it is the least likely to affect production since fruit growth is paralyzed

 $B \rightarrow$ stage 3 because it is the most sensitive phase and we wanted to know what the effects on quality were, even thinking that it would surely affect productivity in some way.

The first analyzes that were carried out were the morphological ones, the weight of the whole olive and the bone, the equatorial and longitudinal diameter, the color, the texture analyzed by two different methods to differentiate the texture of the pulp and the skin, and also Part of the olives were freeze-dried to preserve them for further analysis.

The first analyzes that were carried out were the morphological ones, the weight of the whole olive and the bone, the equatorial and longitudinal diameter, the color, the texture analyzed by two different methods to differentiate the texture of the pulp and the skin, and also Part of the olives were freeze-dried to preserve them for further analysis.

Regarding the sensory analysis, a descriptive analysis was carried out with a trained tasting panel and the lexicon of the international olive oil council was used, an affective analysis was carried out in three locations, two of them representing the population that lives in the countryside and the other to the city population. In the same way, the study of willingness to pay was carried out in order to study the effect of the hydroSOStainable logo. For this, the same olives were used and labeled differently, some with the hydroSOStainable logo and others as Conventional, and information was given to consumers on the hydroSOStenible concept.

Next, I will explain the tests that have been carried out on olive oil.

I know that this conference is about "table olives" but I want to highlight few results on olive oil, and need to explain what has been done.

In experiment C, located in Seville, we have 4 treatments, first with a control, then C1 in which a 58% reduction in irrigation was applied during stage 2. In C2 the reduction was 66%. in stage 2 and in C3 the irrigation water was also reduced by 66 % but this time during the entire cultivation period.

In experiment D, which was carried out in Ciudad Real, there was also a control and 3 deficit irrigation treatments. In D1 a water stress of -2 Mpa was applied in stage 2, in D2 the stress was -3MPa and in D3 irrigation was directly eliminated in stage 2.

GRANADA \rightarrow CATEGORIZAR

Data were analyzed using a one-way analysis of variance using Tukey's multiple range test. Significant differences were considered at these 3 levels. Pearson correlations were also performed to study the correlations between variables. All statistical analyzes were performed using the XLSTAT software.

two campaigns

A3 was the one that registered the highest stress values. The differences that are observed between both years may be due to the **load of the trees**, since in 2015 the load was 15 % than in 2016.

The results do not show both years because the differences were not significant and the average of the two years of cultivation was made.

	PRACE PARALLY	UUU	Ucivez	-exp	erment	A					
			Mo	pholo	gical a	nalysi	5				
		Pit		Equatorial	Longitudinal	DMC	Tex	ture		Colour	
	fruit weight (g)	weight (g)	ratio	diameter (mm)	diameter (mm)	(g dw kg ⁻¹ fw)	PT (N)	MTT (N)	L^*	a*	b*
ANOVA											
Irrigation RO	***	000	000		٠	**	000		۰	000	NS
Irrigation TO	000	000		٠	٠		0.0.0		**		0.0
Spanish-style processing		NS		٠	*	۰	***		**		**
Multiple rang	ge test Tuke	y Raw (Olives								
A0	4.43 b	0.76 a	5.83 b	19.3 b	21.3 a	328 b	1.28 b	13.1 b	57.3 ab	-12.9 a	38.
A1	445 h	0.73 a	6.09 ab	19.2 b	21.3 a	341 a	1.35 b	12.9 b	56.9 b	-12.5 a	38.
A2	4.66 a	0.74 a	6.29 ab	19.5 a	21.5 a	321 b	1.44 b	10.2 c	57.2 b	-12.4 a	37.
A3	4.13 c	0.64 b	6.45 a	19.7 a	20.4 b	341 a	2.54 a	19.1 a	59.9 a	-19.1 b	38.
Multiple rang	ge test Tuke	y Table	Olives								
A0	4.20 a	0.75 a	5.60 a	19.0 ab	19.5 a	330 b	1.07 b	6.52 b	55.6 b	0.64 ab	36.4
A1	4.02 a	0.73 a	5.51 a	18.7 b	19.2 a	338 a	1.28 b	5.95 b	55.3 b	0.54 b	36.9
A2	3.97 a	0.73 a	5.44 2	18.8 ab	189a	332 b	1.40 b	4.92 c	55.4 b	0.70 a	36.2
A3	2.81 b	0.61 b	4.60 b	19.2 a	14.9 b	341 a	1.85 a	7.25 a	56.4 a	0.62 ab	37.0
Multiple rang	ge te <u>st Tu</u> key	y Spani	sh-Style p	rocessing							
Raw olives	4.42 a	0.72	6.14 a	19.4 a	21.1 a	317 a	1.65 a	13.8 a	57.8 a	-14.2 b	38.1
Table oliver	3 75 h	0.71	5.28 b	18.9 h	18.1 b	309 b	1.40 h	6 03 b	557b	0.62 a	36.7

The moderate stress caused the larger size of the olives and, on the other hand, the severe stress reduced the size and produced rounded-shape olives.

Previous studies also reported similar results, with a tendency to decrease the size of "Manzanilla" olives with severe irrigation treatments.

The effect of processing led to a decrease in all the morphological parameters analyzed, which is due to the osmotic effect of sodium chloride and the LEACHING of the compounds to the fermentation liquid and brine.

	- 1				
	Mineral	l analy	sis		
	N	lacro-elemen	its	Micro-e	lements
	Ca (g kg-1 fw)	K (g kg-1 fw)	Mg (g kg-1 fw)	Zn (mg kg-1 fw)	Cu (mg kg ⁻ fw)
ANOVA				· · · · ·	
Irrigation RO	NS	NS	NS	NS	NS
Irrigation TO	NS	NS	NS	NS	NS
Spanish-style processing	***	***	NS	NS	NS
Multiple range test Tu	ikey Raw Olive	s			
A0	0.47	4.96	0.13	2.07	1.72
A1	0.51	4.84	0.14	2.17	1.87
A2	0.54	4.70	0.12	2.29	2.06
A3	0.54	4.75	0.13	2.07	1.62
Multiple range test To	ıkey Table Oliv	es			
A0	0.40	0.95	0.15	2.01	1.98
A1	0.27	1.07	0.14	2.12	1.72
A2	0.40	1.10	0.13	1.83	1.45
A3	0.37	1.12	0.14	2.19	1.80
Multiple range test To	ikey Spanish-S	tyl <u>e proces</u> sir	ıg		
Raw olives	0.52 a	4.81 a	0.13	2.15	1.79
Table olives	0.36 h	1.06 b	0.14	2.03	1 74

The mineral composition of the olives was not affected by the water deficit, although a decrease in Calcium and Potassium could be observed when going from raw to seasoned olives. **Other authors also observed this decrease, specifically they observed that the greatest loss occurred during the washings in the Spanish-style dressing, due to its great solubility.**

	a contrag - cr	cperiment A		
	Antioxida	ant activity an	nd	
	total pl	kenol content		
	ABTS*	DPPH*	FRAP	TPC
	(mmol Trolox kg-1 fw)	(mmol Trolox kg-1 fw)	(mmol Trolox kg-1 fw)	(g GAE kg ⁻¹ fw)
ANOVA				
Irrigation RO	NS	NS	NS	NS
Snanish-style processing	NS ***	NS ***	NS ***	NS ***
Multiple range test Tukey I	Raw Olives			
A0	27.1	48.7	24.8	19.4
A1	26.3	48.9	25.1	19.6
A2	26.3	48.1	24.5	20.4
A3	26.3	49.2	24.7	19.6
Multiple range test Tukey	able Olives			
A0	6.67	9.55	15.5	5.77
A1	6.88	9.38	15.2	5.81
A2	6.70	9.71	15.2	5.74
A3	6.87	9.75	15.3	5.82

The antioxidant activity and the total content of polyphenols were not affected by the irrigation treatments applied in stage 2 either. High concentrations were found in the raw olives, which decreased after processing. The antioxidant activity and total phenols can be affected by the state of ripeness of the olives and the production method used. In fact, other authors found that the acid medium causes the diffusion of various polyphenols, such as hydroxytyrosol or the degradation of some others.

The profile of organic acids and sugars found in raw olives was totally different from that found in seasoned ones, but in both cases, water stress had no effect on the concentrations of these compounds. Changes in these profiles are due to fermentation. In the bibliography, similar profiles can be found in different olive varieties, both for raw and seasoned ones.

					and the second second						
			Po	lyphen	olic p	rofile					
				Rau	n olives	.	A	3 RDI sev	vere long	-time t	reatm
_			Hydroxytyrosol glucoside	Caffeoyl-6'- secologanoside	Oleoside	Elenolic aci glucoside	id Oleu agly	ropein /cone	Quercetin- O-rutinosi	3- le	
				(mg eq	quercetin-3-	2-rutinoside 10	0 g ⁻¹ fw)				
A!	NOVA		NS		**						
Tu	ikey Multiple R	ange T	est								
		A0	3.88	4.00 b	119 b	2.94 b	84	.2 a	25.5 a		
		AI	3.74	3.96 ab	164 a	2.94 b	81	.5 a	29.7 a		
		A2 A3	2.96 3.94	5.27 a 3.32 bc	91.7 c 124 b	1.38 c 3.01 a	68 74	.1 c .8 b	14.8 b 27.4 a	_	
					Oleuronei	Caffeovi					- 2"-
	Luteolin-3 O- rutinoside	Ver	basco- Oleoside side glucoside	Dihydro- oleuropein	n diglucosid	6'- secologan	Oleuro- pein	Comselo- goside	Luteo- lin	Ligstro side	Hydr yoleu
				(mg eq	uteolin-3-0-	rutinoside 100	g ⁻¹ fw)				pen
ANOVA											
rrigation RO Fukey Multip	* le Range Test		* *	**	*	¥	*	*	*	*	*
ingual of RO	A0 36.2 a	20	6.4 a 43.5 a	1.26 b	3.27 ab	6.22 a	211 ab	4.52 a	9.14 a	14.8 a	6.84
	A1 38.2 a	3	1.5 a 36.0 a	6.36 a	3.83 a	4.65 b	230 a	1.75 c	8.17 ab	12.9 b	8.10
	10 06 71				0.01.1	4 6 9 1	1071	0.001	7 0 2 1	120.1	1 0.00

HYDROXYTYROSOL NS

All irrigation treatments increase 2-hydroxyoleuropein, which may be due to decreased concentration of oleuropein aglycone. SEVERE STRESS LOW \rightarrow

HYDROXYTYROSOL NS

Moderate stress \rightarrow increase in some compounds

Same trend as raw olives \rightarrow severe stress \rightarrow decreased concentration \rightarrow other authors also found that severe stress caused a drop in the concentration of some polyphenols and reported that it may be due to increased activity of PHENYLALANINE in the trees

			Po	ly phen Pro	olic p	rofile	4				
	-		-Hy	d.roxytyrosol glucoside	Caffeoyl-6 secologanosi (mg	'- Öleosid	Elenoli 2 gluco -0-rutinosi	ic acid ()side de 100 c-i fw	Dieuropein aglycone	Quei O-ru	-cetin-3- tinoside
_	ANG Proc Tuk	DVA cessing cey Multiple F	tange Test	***	***	***	**	ne 100 g 14	***		***
		ressing	RO TO	3.62 a 0.62 b	4.14 a 0.08 b	125 a 0.25 b	2.5 0.1	7 a 2 b	77.1 a 0.12 b	2 0	4.3 a .21 b
	Luteolin-3- <i>O</i> - rutinoside	Verbasco- side	Oleoside di- glucoside	Dihydro- oleuropein	Oleuropei n diglucosid e	Caffeoyl- 6'- secologan oside	Oleuro- pein	Comselo- goside	Luteo- lin	Ligstro side	2"- Hydro yoleur pein
ANOVA Processing Tukey Multipl	e Range Test	***	***	(mg eq	luteolin-3-0-	rutinoside 100	g-1 fw)	***	***	***	***
Processing		25.2	25.1	1.01	2.05	6.10	212	0.72	7.70 a	12.7 a	8 20 -

When comparing the total content of the raw olives with the seasoned ones, as occurred in the previous determinations, a great decrease is observed due to the osmotic effect, the treatment with soda and salt, and lactic fermentation. **LEACHING**

Regarding the volatile profile, a total of 38 compounds were identified, which are summarized in 8 families.

The content of esters and terpenes stand out compared to the others and also the great variation of the control in the case of esters, since in this sample it is the predominant family, while in the rest, in hydro-sustainable olives, the predominant family is that of terpenes.

Other authors found some changes in the volatile profile in table olives of the Kornoiki and Manzanilla variety but with different irrigation treatments.

In general, alcohols (high in T0 and T2) are associated with fruity and candy flavor notes, aldehydes (highest in T0) with green, vegetable and herbaceous notes,

terpenes (highest in T1) with citrus and pine notes,

organic acids (highest in T2) with herbaceous and vinegar notes, and phenolic compounds with green, woody, and cheesy notes

к ″М	E3 1	anil	lla" (olive	s - E	×neri	ment	A				
,,,,					Sens	ory c	maly	sis				
				Desc	riptive	senso	ry anal	ysis		A3 RDI se	vere long-t	ime treat
	Appeara	nce				Flavor					Texture	
Sample	Color	G	een-olive flavor	Saltiness	Bitterness	Sourness	Sweetness	Aftertaste	Off-flavo	r Hardness	Crunchiness	Fibrousne
ANOVA												
	**		•	NS	•		NS		NS	***	***	NS
Multiple	Range Tu	key Test										
A0	6.5 a		6.5 ab	5.9	5.8 a	2.4 b	2.9	5.9 ab	0.0	7.8 a	7.3 a	0.3
A1	5.4 b		6.9 a	5.0	3.8 ab	3.0 b	2.1	5.9 ab	0.0	6.6 a	5.6 a	0.8
A2	5.9 ab		6.4 ab	5.9	4.0 ab	2.6 b	2.2	5.6 b	0.0	7.2 a	6.1 a	0.3
A3	5.7 ab		6.2 b	4.9	2.8 b	6.9 a	1.7	8.1 a	0.0	3.5 b	1.7 b	0.4
ANOV	Color	Flavor	Bitternes	Af Saltine	f ective ss Sou	SENSOI umess	y analy Hardnes	y sis ss Cru	nchiness	Fibrousness	Aftertaste	Overall
	NS	NS	NS	NS		NS	NS		NS	NS	NS	NS
Multip	e Range J	ukey Te	st									
A0	6.2	6.6	6.3	6.2		6.3	7.0		6.7	6.5	6.6	6.5
A1	6.7	6.6	6.3	6.0		6.0	6.7		6.6	6.6	6.2	6.4
A2	6.5	6.3	5.7	6.3		5.8	6.5		6.6	6.5	6.2	6.4

A previous study carried out with Ascolana olives also showed a decrease in bitterness with water stress and in Nocellara del Belice olives the intensities of green olive aroma, acidity and sweetness were reduced.

Regarding the affective study, the consumers did not show significant differences in any locality between the irrigation treatments, although it should be noted that on a scale of 1 to 9, the general scores obtained were quite good.

In a price study with Manzanilla olives, consumers rated deficit irrigation olives with better aroma, crunchiness and aftertaste

/vtanzi	anicea oe	sens	sory a	nent A nalysi	\$	0	
	C	Consumer	willingn	less to p	ay		
		Green-olive flavor	Saltiness	Hardness	Overall		
ANOVA Test							
Logo effect		***	NS	NS	•		
Location		***	NS	NS	•		
Logo effect vs Loc	ation	***	NS	NS	*		
Multiple Range T	ukey Test Logo effec	t					1
	Conventional	6.7 b	6.4	6.6	6.5 b	A 🖌 🖌	
	HydroSOS logo	8.0 a	7.4	7.0	7.4 a		
Multiple Range 1	ukey Test Location						
Location	LI	7.7 a	6.6	6.9	6.9 b		
	12	7.0 B	7.1	(2)	7.3 a		
Multiple Range T	wkey Test Looo effer	t ve Location	7.0	0.5	0,0 0		0
Conventional	I 1	7.1 ab	5.9	65	63.sh	HIDRODU	DIENIBLE
	12	7.0 ab	6.6	7.3	762		
	L3	5.9 c	6.7	5.9	5.6 b		
HudroSOS logo	LI	8.3 a	7.2	7.3	754		
,	L2	6.9 b	7.7	7.0	7.1 ab		
	13	87.9	7.2	69	770		

L1 and L3 rural environment L2 urban environment

88% indicated that they would be willing to pay more than the market price (€1.35 per 200g)
52% between 1.35 and 1.75
32% between 1.75 and 2.50
4% more than 2.50

This analysis makes it possible to identify the purchase drivers, which are the ones that are grouped at this extreme. **FUTURE ACCEPTANCE OF WATER SUSTAINABLE OLIVES**

A penalty analysis was also carried out with the four samples WHICH GIVES US INFORMATION ON WHETHER THERE IS SOME POINT OF IMPROVEMENT ACCORDING TO THE TASTES OF THE CONSUMERS It can be seen that no attribute was marked as improvable, which coincides with the previous results of the affective study. In a previous study with hydroSUSTAINABLE almonds, the same thing happened and consumers did not highlight any changes.

In the antioxidant activity of the ABTS and DPPH trials, small changes were observed in the deficit irrigation treatments. The percentage of variation showed a great decrease in concentration compared to the matrix extracted in the laboratory, which may be due to the acidic conditions of digestion that can cause the degradation of antioxidants and polyphenols. **Previous studies determined that only 25% of oleuropein and 20% of comselogoside are stable during digestion.** Regarding the percentage of bioaccessibility, no significant differences were found between samples. Previous studies also showed a low bioaccessibility of polyphenols and antioxidants in "Cornecuelo" olives.

In this experiment, the results of both campaigns will be shown due to the great difference between them. In this experiment, the large variabilities caused by external factors such as soil, climate, rain, etc., caused the stress in 2016 to be higher than in 2015. Although, due to this variability, statistically significant differences are not shown, the stress of treatment B2 was the highest.

//	RESULIS Manzania			Sev	1227	O/V	4	-				
/	Manzanice	au	Nes - Morn	Bold	aica	ent o	Duci	0				
		,	20:	ACCC	green	C Grin	20	3				
		ANOVA	B0	B1	B2	ANOVA	20 B0	B1	B2	ANOVA	2015	2
		Anc			Raw oli	ives						
Fru	uit weight (g)	NS	5.03	5.27	5.07	NS	3.40	3.06	3.05	***	5.13 a	3.
Pi	it weight (g)	NS	0.89	0.82	0.85	NS	0.65	0.62	0.62	***	0.85 a	0.
F	ruit/pit ratio	NS	5.65	6.43	6.00	NS	5.24	4.90	4.89	***	6.04 a	5.
Equator	ial diameter (mm)	NS	19.4	19.7	19.5	NS	16.4	16.1	15.9	NS	19.5	1
Longitud	inal diameter (mm)	NS	23.5	23.6	23.5	NS	19.7	19.6	19.2	***	23.5 a	16
Texture	Puncture Test (N)	NS	2.67	2.36	2.85	NS	2.57	2.86	2.85	NS	2.71	2
	Magness Taylor (N)	**	19.2 a	9.02 b	10.7 b	•••	17.7 a	10.3 b	10.4 b	NS	12.5	12
Color	L*	NS	55.9	57.7	57.3	NS	59.9	58.6	59.9	NS	56.9	5
	a*	NS	-18.8	-18.4	-18.3	NS	-19.2	-17.8	-18.9	NS	-18.5	- 3
	b*	NS	37.9	39.6	39.3	NS	41.1	39.5	41.3	NS	38.9	4
					Table of	ives					_	_
Fru	uit weight (g)	*	5.51 a	4.75 b	5.07 ab	NS	2.87	2.98	2.82	***	5.11 a	2.
Pi	it weight (g)	NS	0.87	0.79	0.83	NS	0.60	0.61	0.59	***	0.83 a	0.
F	ruit/pit ratio	NS	6.33	6.01	6.11	NS	4.76	4.87	4.76	***	6.16 a	4.
Equator	ial diameter (mm)	NS	18.4	18.9	18.2	NS	15.9	15.7	15.5	***	18.5 a	15
Longitud	inal diameter (mm)	***	22.4 b	23.2 a	22.1 b	NS	20.0	19.4	19.4	***	22.6 a	19
Texture	Puncture Test (N)	NS	1.21	1.06	1.23	NS	1.24	1.10	1.22	NS	1.17	1
	Magness Taylor (N)	NS	8.29	8.92	10.1	*	8.59 b	9.16 b	10.5 a	NS	9.10	9
Color	L*	NS	53.3	51.6	55.4	NS	54.6	55.7	57.9	NS	53.4	5
	a*	**	1.17 ab	1.65 a	0.78 b	NS	1.43	1.19	0.87	NS	1.20	1
	<i>b</i> *	*	34.2 h	33.6 h	376 a	NS NS	333	33.8	36.2	NS	35.1	

		Ar	ntioxi total	idant phen	activit ol cor	ty an itent	d				
		20	015			201	6				
	ANOVA	B0	B1	B2	ANOVA	B0	B1	B2	ANOVA	2015	2016
				Ra	w olives				210		
ABTS ⁺ (mmol Trolox kg ⁻¹)	***	28.6 a	24.9 b	28.1 a	*	27.6 ab	25.2 b	28.8 a	NS	27.2	27.2
DPPH (mmol Trolox kg ⁻¹)	4.4.4	48.9 b	52.0 a	46.7 c		47.70 b	53.94 a	48.58 b		49.5 b	50.1 a
FRAP (mmol Trolox kg ⁻¹)		24.3 b	23.7 c	28.4 a	**	23.6 b	23.2 6	27.9 a		25.5 a	24.9 b
IPC (g GAE kg ')	4.4.4	32.4 a	21.4 D	32.2 a	ale oliver	32.0 a	21.0 D	33.4 a		28.0 D	29.2 a
ABTS ⁺ (mmol Trolox kg ⁻¹)	NS	9.04	9.10	0 10	NS	8 74	9.41	9.34	NS	9.11	9.16
DPPH (mmol Trolox kg ⁻¹)	***	7416	8.61.2	8.42 a	*	731.0	9.64 9	8.62 h	NS	8 15	8 52
FRAP (mmol Trolox kg ⁻¹)		19.2 a	181b	20.1 a	**	191.a	17.8 b	193a	NS	19.1	18 73
TPC (g GAE kg ⁻¹)	***	5.46 b	5.87 a	5.82 a	**	5.46 c	5.90 a	5.83 b	NS	5.72	5.73

When comparing these results with experiment A, it can be affirmed the importance of the stage in which deficit irrigation is applied on the synthesis of antioxidant compounds, since when applying water stress in stage 2 no significant differences were found. Other authors did find significant differences in the FRANTOIO variety in the concentration of POLYPHENOLS, when applying irrigation during the bone hardening phase.

RESUL	13 A	NVD	UJ.	seu	3370	<i>N</i>	1				
"Manzai	nilla	" olin	es -	Exp	erime	nt B	-				
			Fo	tty a	cid n	olil	0.				
					one pi						
Eathy asid (0()		20	15			20	016		ANOVA	2015	2016
Fatty actu (%)	ANOVA	B0	B1	B2	ANOVA	B0	B1	B2	ANOVA	2015	2010
				Ra	w olives						
Palmitic acid (C16:0)	NS	16.2	16.9	16.8	NS	18.6	17.8	18.2	*	16.6 b	18.2 a
Stearic acid (C18:0)	NS	2.72	2.59	2.85	**	2.90 b	3.01 b	3.40 a	**	2.72 b	3.11 a
Oleic acid (C18:1)	NS	73.4	70.7	70.5	*	68.8 b	70.7 a	69.5 ab	NS	71.5	69.7
Linoleic acid (C18:2)	NS	5.08	6.82	6.69	NS	5.62	4.37	4.88	NS	6.19	4.95
Linolenic acid (C18:3)	NS	0.94	0.94	1.11	NS	1.30	1.26	1.16	*	0.99 b	1.24 a
Araquidic acid (C20:0)	NS	0.42	0.38	0.48	NS	0.44	0.56	0.60	NS	0.43	0.53
Σ SFA	NS	19.3	19.9	20.1	NS	21.9	21.4	22.2	**	19.8 b	21.8 a
Σ MUFA	NS	73.4	70.7	70.5	*	68.8 b	70.7 a	69.5 ab	NS	71.5	69.7
Σ PUFA	NS	6.01	7.75	7.79	NS	6.92	5.63	6.04	NS	7.18	6.20
(MUFA+PUFA)/SFA	NS	4.11	3.94	3.89	NS	3.45	3.57	3.40	NS	3.98	3.47
Delectric end (CIC-O)		16.0	16.0	Tab	le olives	10.7.	47.7.5	17.0 k		46.7.5	17.0 -
Paimitic acid (C16:0)	NS NC	16.9	16.8	10.5	NC	18.7 a	2.62	17.0 D	NC	16.7 D	17.8 a
Oloic acid (C18:1)	NC	2.74	60.79	2.04	*	2.75 70.1 h	2.02 70.3 h	71.4.9	*	2.04 70.2 h	2.60
Linoleic acid (C18-2)	NS	6 41	7.87	7 23	NS	6 72	7 53	6.87	NS	7 17	7 04
Linolenic acid (C18:3)	NS	1.02	0.94	0.99	NS	1 18	1.26	1 29	**	0.98 h	1 74 a
Araquidic acid (C20:0)	NS	0.47	0.46	0.45	NS	0.48	0.49	0.46	NS	0.46	0.48
Σ SFA	**	20.1 a	20.2 a	19.7 b	*	22.0 a	20.8 b	20.5 b	***	20.0 b	21.1 a
Σ MUFA	NS	70.82	69.28	70.47	*	70.1 b	70.3 b	71.4 a	*	70.2 b	70.6 a
Σ ΡΙ ΙΕΔ	NS	7 47	8.81	8 22	NS	7 90	8 79	8 16	**	8 15 h	8.28 a
(10174 - 0174)/074		2 00 6	2.01	2.00 -		2.50	2.04 -	2.07 -		2.01 -	2.20 0

2015 with less stress \rightarrow NS

Something similar occurred in previous studies when deficit irrigation was applied in stage 2, therefore, water stress could cause an improvement in the lipid profile of table olives.

			Org	anic	Raw	ls and olives	d sug	ars	0			
Organic	acid or sugar		2015				20	16				
(g	kg ⁻¹ fw)	ANOVA	В0	B1	B2	ANOVA	BO	B1	B2	ANOVA	2015	2016
Organic	Citric acid	NS	0.255	0.255	0.230	NS	0.253	0.263	0.237	NS	0.247	0.251
acids	Tartaric acid	**	0.140 a	0.067	0.084		0.143 a	0.066 b	0.083 b	NS	0.097	0.098
	Malic acid	NS	0.490	0.487	0.432	NS	0.516	0.487	0.450	NS	0.469	0.484
	Succinic acid	*	0.500 a	0.144 b	0.137 b		0.505 a	0.145 b	0.137 b	NS	0.260	0.262
Sugars	Sucrose	NS	1.758	1.696	1.677	NS	1.764	1.690	1.677	NS	1.710	1.710
-	Glucose	NS	3.905	3.283	3.482	NS	3.915	3.427	3.528	NS	3.556	3.623
				100	Table	olives						
			Organic	Phy	tic acid: é	.42 g kg-1	fw					
			acids	Lac	tic acid: 1	.50 g kg-1	fw					
				Ace	tic acid: (0.79 g kg-1	fw					
			Sugars	Mal	toheptaos	e: 2.03 g k	g–1 fw					
				Mar	mitol: 2.4	6 g kg–1 f	w					
				Gly	cerol: 0.7	7 g kg-1 fy	N	_				

Regarding the profile of organic acids and sugars, only tartaric and succinic were slightly decreased with deficit irrigation in raw olives. In the case of table olives, as in experiment A, the profile changed due to the fermentation process and no significant differences were found between samples.

HYDROXYTYROSOL NS

Other authors reported the increase in tyrosol and its derivatives as a consequence of deficit irrigation, which agrees with the results of this experiment.

HYDROXYTYROSOL NS

There was also an increase in the concentration of some polyphenols DERIVED FROM TYROSOL

		eea	olives	– Expe	riment	в					
			Po	lyphen	olic p	rofile		1			
				Pro	cessing	[*					
		F	ydroxytyrosol glucoside	Caffeoyl 6'- secologanoside	Oleoside	Elenolic aci glucoside	d Ole	uropein lycone	Quercetin- O-rutinosi	3- le	
ANO Proce Tuke	DVA essing ey Multiple Ra	nge Test	***	(mg eq	49 uercetin-3- (***	<u>u g., tw)</u>	***	***	_	
FIGG	essing	RO TO	5.16 a 0.73 b	7.91 a 0.19 b	120 a 0.60 b	4.44 a 0.28 b		30.0 a).14 b	56.1 a 0.39 b	1	
	I uteolin-3-	Verba	sco- Oleoside	Dihydro- oleuropein	Oleuropei n diglucosid	Caffeoyl- 6'- secologan oside	Oleuro- pein	Comselo- goside	Luteo- lin	Ligstro side	2"- Hydrox yoleuro pein
	<i>O</i> - rutinoside	side	glucoside				and frees)				
DVA	O- rutinoside	sid	glucoside	(mg eq	luteolin-3-0-1	utinoside 100	(*1w)				
OVA essing ey Multiple I	O- rutinoside	***	glucoside	(mg eq ***	luteolin-3-0-1	utinoside 100 ;	***	***	***	***	

AND WHAT HAVE WE LEARNED?

After all the trials shown, the correlations with the stress integral were studied, although no statistical differences were found in the morphological parameters, a negative correlation was found between the weight of the olive, the stone weight and the equatorial diameter and the integral. of stress. Therefore, the greater the stress integral applied in stage 3, the smaller the size of the fruit, although the pulp/stone ratio will be maintained as a consequence of the decrease in the weight of both.Regarding linoleic acid, MUFAs, and the ratio of unsaturated fatty acids to saturated ones, the correlation found was positive, therefore, the higher the stress, the higher the content of linolenic acid, MUFAs, and the better unsaturated ratio.

After in vitro digestion simulation, in this experiment **no significant differences were found** between irrigation treatments nor in the percentage of bioaccessibility of polyphenols.

Las preguntas se organizaron en 5 niveles:

The study was carried out using an online survey, run through the Qualtrics platform (Provo, UT, USA). Six countries were selected (USA, China, Mexico, Brazil, Spain and India) based on availability of databases and to represent large population countries on 4 continents.

No specific criteria regarding food habits or behavior towards the environment were used to qualify the respondents.

The survey was completed by 3600 consumers (50% self-identified men and

women; 600 consumers per country). Four age ranges were selected (25% of participants for each age

range), clearly dierentiated: 18–23 years (centennials); 24–41 years (millennials); 42–52 years (gen X) and 53–73 years (baby boomers).

The study was carried out using an online survey, run through the Qualtrics platform (Provo, UT, USA). Six countries were selected (USA, China, Mexico, Brazil, Spain and India) based on availability

of databases and to represent large population countries on 4 continents.

No specific criteria regarding food habits or behavior towards the environment were used to qualify the respondents.

The survey was completed by 3600 consumers (50% self-identified men and

women; 600 consumers per country). Four age ranges were selected (25% of participants for each age

range), clearly dierentiated: 18–23 years (centennials); 24–41 years (millennials); 42–52 years (gen X) and 53–73 years (baby boomers).

The study was carried out using an online survey, run through the Qualtrics platform (Provo, UT, USA). Six countries were selected (USA, China, Mexico, Brazil, Spain and India) based on availability of databases and to represent large population countries on 4 continents.

No specific criteria regarding food habits or behavior towards the environment were used to qualify the respondents.

The survey was completed by 3600 consumers (50% self-identified men and

women; 600 consumers per country). Four age ranges were selected (25% of participants for each age

range), clearly dierentiated: 18–23 years (centennials); 24–41 years (millennials); 42–52 years (gen X) and 53–73 years (baby boomers).
CONCLUSIONS
In general, consumers associate sustainable production with organic products and, in turn, associate organic products with higher quality and health benefits.
In all countries, consumers think that the food categories in which the most water can be saved throughout their production and distribution chain are those related to primary consumption, such as cereals and vegetables . This finding clearly shows that consumers do not associate food processing with water consumption.
The logo proposed for the hydroSOStainable products was valued positively, especially by the young generations, and it was considered useful for the identification of these sustainable foods.

Let's start with the introduction

conclusjons

- ✓ Morphological quality of hydroSOStainable olives showed some changes as compared with control. In Experiment A, RDI strategies produced rounder, harder, lighter and greener olives while in Experiment B the size was slightly reduced but the pulp proportion was maintained.
- ✓ Regarding mineral composition, antioxidant activity, TPC and organic acids and sugars of Experiment A, the hydroSOStainable olives showed the same values than control, nutritional and functional quality was maintained and RDI strategies did not affected olives quality.
- ✓ Several volatile compounds were affected by the RDI treatments, as well as the intensity of some sensory descriptors. As Experiment B, when RDI was highest, antioxidant activity, TPC and MUFA content were increased. It was also found a positive correlation between de SI and the FRAP assay to determine antioxidant activity in several olive samples in both experiments.

RDI: regulated dficit irrigation; TPC: total phenolic content; MUFA: Monounsaturated fatty acids; SI: stress integral

CONCLUSJONS

- With respect to hydroSOStainable olives oil, both experiments showed an increase of MUFAs and decreased SFAs, improved, balanced volatile profiles and sensory attributes when the water restriction was applied during pit hardening in a moderate stress.
- ✓ The Spanish-style processing produced a decreased in the concentration of all polyphenols due to the osmosis effect during fermentation and brining. HydroSOStainable olives polyphenol profile was improved when trees were submitted to a moderate stress in both experiments. HydroSOStainable TO are healthier for consumers due to an increase of some polyphenols such as oleuropein.
- ✓ Affective sensory analysis was carried out with TO of Experiment A in three locations. Consumers preferred TO with hydroSOStainable logo and were willed to pay a higher price for them. The logo created an effect on consumers as they marked these TO with higher green-olive flavor and overall liking.

MUFA: Monounsaturated fatty acids; TO: table olives

CONCLUSJONS

Antioxidant activity and phenolic content after *in vitro* gastrointestinal digestion simulation showed different behavior in Experiment A and B. In the first (A), small differences were found for TPC, ABTS⁺ and DPPH assays between irrigation treatments but in the latter, no differences were found. As a whole, a total amount of 1 g GAE kg⁻¹ was extracted after digestion, so ~12 % of bioaccessible polyphenols were found on control and hydroSOStainable TO. Eating 10 hydroSOStainable TO per day involve the daily intake of 40 mg of bioaccessible polyphenols for protective effect against chronic diseases, which involves the 7 % of the daily recommendations.

Therefore, it could be concluded that, if the water reduction is applied during pit hardening stage (Experiment A), fruit size and yield are maintained with no significant differences in composition, and when the water deficit is applied during rehydration stage (Experiment B), olive size is reduced but improved the functional quality of olives.

FUTURE RESEARCH

- ✓ Study the effect of the irrigation treatments studied in this thesis in more olive varieties and locations. It would be good to study different varieties at the same location and repeat the study in other locations to be able to study the effect of water stress in the varieties and also how the location affects.
- ✓ It would be interesting to check the quality of the table olives after each one of the stages of the production chain; this is, after the alkalinization, after the different washing steps, and after each step of the fermentation (after each change of brine).
- ✓ Following the study of phenols bioaccessibility, it would be interesting to study the phenols bioavailability.

Before I start even with the Introduction section, I would like you to share with you an idea. Imagine you go to the supermarket and you have these two options for table olive:

- 1. You have this jar of 200 g of olives cultivated under "conventional" conditions and it cost you 1,35 euros.
- 2. Besides, you have a second option. This jar of 200 g of olives cultivated with a "lower amount of irrigation water", the quality is similar but it cost you 1,75 euros.

Which jar would you take home? ... Why? Please, just think about it and we will answer these two questions at the end of the presentation.

